THE MERSENNE JOIN MATRICES ON A-SETS

Dr. N. ELUMALAI¹ and R. KALPANA²

- 1. Associate Professor of Mathematics, A.V.C.College (Autonomous), Mannampandal 609305, Mayiladuthurai, India.
- 2. Assistant Professor of Mathematics, SaradhaGangadharan College, Puducherry-605 004.

ABSTRACT

The join matrix [S] fon Swithrespect to a function $f: P \to \mathbb{C}$ is defined as $([S]_f)_{ij} = f(x_i \lor x_j)$. If $f(x_i \lor x_j) = 2^{x_i \lor x_j} - 1$, then the $n \times n$ join matrix obtained is called the Mersenne join matrix on S. A recursive structure theorem for Mersenne join matrices on A-sets is verified and a recursive formula for $det[S]_f$ and for $[S]_f^{-1}$ on A-sets is also verified. The recursive formulaealso yield explicit formulae, e.g. the known determinant and inverse formulae on chainsand a-sets.

Key words: Join Matrices, Mersenne Join Matrices, a- Set, A-Set

INTRODUCTION

Let $(P, \leq) = (P, \vee)$ be a join semi lattice, let $S = (x_1, x_2, \dots, x_n)$ be a subset of P and let $f: P \to C$ be a function. The join matrix [S] for S withrespect to a function f is defined as $([S]_f)_{ij} = f(x_i \vee x_j)$. We say that S is join-closed if $x \vee y \in S$ whenever $x, y \in S$. We say that S is upper-closed if $(x \in S, x \leq y) \Rightarrow y \in S$ holds for every $y \in P$. It is clear that an upper-closed set is always join-closed but the converse does not hold.

In [10] we introduced join matrices and presented formulae for $\det[S]_f$, new upper and lower bounds for $\det[S]_f$ and a new formula for $[S]_f^{-1}$ on join-closed sets S (i.e., $x_i, x_j \in S \Rightarrow x_i \lor x_j \in S$). By assuming the semi-multiplicativityoff, formulae for $\det[S]_f$ and $[S_f]^{-1}$ on join-closed sets are also presented in [10].

We say that S is an A-set if the set $A = \{x_i \lor x_j \middle/ x_i \neq x_j\}$ is a chain. For example, chains and a-sets (with $A = \{a\}$ are known trivial Asets. Since the method, presented in [12], adapted to A-sets might not be sufficiently effective, we give a new structure theorem for $[S]_f$ where S is an A-set. One of its featuresis that it supports recursive function calls.

By the structure theorem we obtain a recursive formula for $\det[S]_f$ and $\operatorname{for}[S]_f^{-1}$ on A-sets. By dissolving the recursion on certain sets we also obtain e.g. the known explicit determinant and inverse formulae on chains and a-sets. We also briefly list the dualforms of our results, i.e. the structure theorem, determinant formulae and the inverse formulae for join matrices on join-semilattices.

Note that $(\mathbf{Z}+,|) = (\mathbf{Z}+,\gcd,\operatorname{lcm})$ is a locally finite lattice, where |is the usual divisibility relation and gcd and lcm stand for the greatest common divisor and the least common multiple of integers. Thus join matrices are generalizations of LCM matrices $([S]_f)_{ij} = f(\operatorname{lcm}(x_i,x_j))$ and therefore theresults in this paper also hold for LCM matrices. For general accounts of LCM matrices, see [6] and [10, Section 6]. Join matrices are also generalizations of LCM matrices, the unitary analogies of LCM matrices, see [8]. Thus the results also hold for LCUM matrices (provided that we define LCUM matrices as done in [8]).

DEFINITIONS

Let $(P, \leq) = (P, \vee)$ be a join-semilattice and let S be a nonempty subset of P. We say that S is join-closed if $x \lor y \in S$ whenever $x, y \in S$.

The method used requires that we arrange the elements of S analogously to the elements of chain A. Thus we give a more applicable definition for a-sets and A-sets than were seen in Introduction.

Definition 2.1 The binary operation \sqcup is defined by

$$S_1 \sqcup S_2 = \{ x \lor y / x \in S_1, y \in S_2, x \neq y \}$$
 (2.1)

where S_1 and S_2 are nonempty subsets of P. Let S be a subset of P and let $a \in P$. If $S \sqcup S = \{a\}$, then the set S is said to be an **a-set**.

Definition 2.2 Let $S = \{x_1, x_2, \dots, x_n\}$ be a subset of and let $A = \{a_2, a_3, \dots, a_n\}$ be a multichain (i.e. a chain where duplicates are allowed). The set S is said to be an A-setif $\{x_1, x_2, \ldots, x_{k-1}\} \sqcup \{x_k\} = \{a_k\} \text{ for all } k = 2, 3, \ldots, n.$

Every chain $S = \{x_1, x_2, \dots, x_n\}$ is an A-set with $A = S \setminus \{x_n\}$ and every a-set is always an A-set with $A = \{a\}$.

Definition 2.3 Let f be a complex-valued function on P. Then the $n \times n$ matrix $[S]_f$, where($[S]_f$)_{ij}= $f(x_i \lor x_j)$, is called the join matrix on S with respect to f. Also the $n \times n$ matrix $[S]_f$,where($[S]_f$)_{ij}= $f(x_i \lor x_j) = 2^{x_i \lor x_j} - 1$, is called the Mersenne join matrix.

In what follows, let $S = \{x_1, x_2, \dots, x_n\}$ always be a finite subset of P. Let also $A = \{a_2, a_3, \dots, a_n\}$. Note that S has always ndistinct elements, but it is possible that the set A is a multiset. Let f be a complex-valuedfunction on P.

3 MERSENNE JOIN MATRICES ON A-SETS

3.1 Structure Theorem

Theorem 3.1 (Structure Theorem) Let $S = \{x_1, x_2, \dots, x_n \}$ be a finite set such that $\{x_1, x_2, \dots, x_{k-1}\} \sqcup \{x_k\} = \{a_k\} \text{ for all } k = 2, 3, \dots, n, \text{ where } A = \{a_2, a_3, \dots, a_n\} \text{ is}$ amultichain. Let f_1, f_2, \dots, f_n denote the functions on P defined by $f_1 = f$ and

$$f_{k+1}(x) = f_k(x) - \frac{f_k(a_{n-k+1})^2}{f_k(x_{n-k+1})}$$
for $k = 1, 2, \dots, n - 1$.

Then
$$[S]_f = M^T DM,$$
(3.1)

where $D = \text{diag}(f_n(x_1), f_{n-1}(x_2), \dots, f_l(x_n))$ and M is the $n \times n$ lower triangular matrix with 1's on its main diagonal, and further

$$(M)_{ij} = \frac{f_{n-i+1}(a_i)}{f_{n-i+1}(x_i)} (3.3)$$

for all i> j.

Proof :Let i > j. Then

$$(M^{T}DM)_{ij} = \sum_{k=1}^{n} (M)_{ki}(D)_{kk}(M)_{kj} = f_{i}(a_{i}) + \sum_{k=1}^{i-1} \frac{f_{k}(a_{k})^{2}}{f_{k}(x_{k})}$$
 (3.4)

$$= f_i(a_i) + \sum_{k=1}^{i-1} (f_k(a_i) - f_{k+1}(a_i)) = f_1(a_i) = f(x_i \vee x_i).$$

The case i=j is similar, we only replace every a_i with x_i in (3.4). Since M^TDM issymmetric, we do not need to treat the case i < j.

3.2 Determinant of Join matrix on A-sets

By Structure Theorem we obtain a new recursive formula for det[S]_fonA-sets.

Theorem 3.2 Let $S = \{x_1, x_2, \dots, x_n \}$ be an A-set such that $\{x_1, x_2, \dots, x_{k-1}\} \sqcup \{x_k\} = \{a_k\}$ where $A = \{a_2, a_3, \dots, a_n\}$ is amultichain. Let f_1, f_2, \dots, f_n be the functions defined in (3.1). Then $\det [S] = f_n(x_1)f_{n-1}(x_2).....f_1(x_n), (3.5)$

Corollary 3.1 If $S = \{x_1, x_2, \dots, x_n \}$ is a chain, then

Det
$$[S]_f = f(x_n) \prod_{k=2}^n (f(x_{k-1}) - f(x_k))(3.6)$$

Proof: By Theorem 3.2 we have

 $\text{Det}[S]_f = f_1(x_1)f_2(x_2)....f_n(x_n)$, where $f_1 = f$ and

 $f_{k+1}(x) = f_k(x) - f_k(x_k) = f(x) - f(x_k)$ for all $k = 1, 2, \dots, n-1$. This completes the proof.

By Theorem 3.2 we also obtain a known explicit formula for det[S]_fona-sets. This formula has been presented (with different notation) in [4, Corollary of Theorem 3] and [12, Corollaries 5.1 and 5.2], and also in [2, Theorem 3] in number-theoretic setting. Note that the case f(a) = 0 is trivial, since then $[S]_f = \operatorname{diag}(f(x_1), f(x_2), \dots, f(x_n))$ anddet[S]_f= $f(x_1)f(x_2).....f(x_n)$.

Corollary 3.2

Let $S = \{x_1, x_2, \dots, x_n\}$ be a set such that $x_i \lor x_i = a$ whenever $x_i \ne x_j$ and let $f(a) \neq 0$. If $a \in S$ (i.e. $a = x_n$), then $\det[S]_f = (f(x_1) - f(a)) \dots (f(x_{n-1}) - f(a))f(a) . (3.7)$

If $a \notin S$, then

$$Det[S] = \sum_{k=1}^{n} \frac{f(a)(f(x_1) - f(a))....(f(x_n) - f(a))}{f(x_k) - f(a)} + (f(x_1) - f(a))....(f(x_n) - f(a)).$$
(3.8)

Example 3.1 Let $(P, \leq) = (\mathbb{Z}+, |)$ and $S = \{1, 3, 6\}$.

Then $S = \begin{bmatrix} 2^1 - 1 & 2^3 - 1 & 2^6 - 1 \\ 2^3 - 1 & 2^3 - 1 & 2^6 - 1 \\ 2^6 - 1 & 2^6 - 1 & 2^6 - 1 \end{bmatrix}$ Since S is an A-set with the chain $A = \{3,6\}$ by (3.1) we

have $f_1 = 2^x - 1$, $f_2(x) = f_1(x) - f_1(6)^2 / f_1(6)$ and $f_3(x) = f_2(x) - f_2(3)^2 / f_2(3)$ and Let $f(x) = 2^x - 1$. Then $f_1(x) = 2^x - 1, f_2(x) = 2^x - 64, f_3(x) = 2^x - 8$

andby Theorem 3.1 [S]_f= M^TDM, where D=diag(-6,-56,63) and M = $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$

and by Theorem 3.2 we have $\det[S]_f = f_3(1)f_2(3)f_1(6) = (-6)(-56)(63) = 21168$.

3.3 Inverse of Mersenne join matrix on A-sets

By Structure Theorem we obtain a new recursive formula for $\left[S_f\right]^{-1}$ on A-sets.

Theorem 3.3 Let $S = \{x_1, x_2, \dots, x_n \}$ be an A-set, where $A = \{a_2, a_3, \dots, a_n \}$ is a

multichain. Let f_1, f_2, \dots, f_n be the functions defined in (3.1), where $f_{n-i+1}(x_i) \neq 0$ for $i=1,2,\dots,n$.

Then $[S]_f$ is invertible and $[S_f]^{-1} = N \triangle N^T(3.9)$

where $\Delta = \operatorname{diag}(1/f_1(\mathbf{x}_1), 1/f_2(\mathbf{x}_2), \dots, 1/f_n(\mathbf{x}_n))$ and N is the n×n lower triangular matrix with 1's on its main diagonal, and further

$$(N)_{ij} = -\frac{f_{n-i+1}(a_i)}{f_{n-i+1}(x_i)} \prod_{k=j-1}^{i+1} \left(1 - \frac{f_{n-k+1}(a_k)}{f_{n-k+1}(x_k)}\right) (3.10)$$
for all $i > j$.

*Proof*By Structure Theorem $[S]_f = M^T DM$, where M is the matrix defined in (3.3) and $D = \operatorname{diag}(f_n(x_1), f_{n-1}(x_2), \dots, f_l(x_n)).$ Therefore $[S_f]^{-1} = N \triangle N^T$, where $D^{-1} = \operatorname{diag}(1/f_n(x_1), 1/f_{n-1}(x_2), \dots, 1/f_I(x_n))$ and $M^{-1} = N$ is the $n \times n$ lower triangular matrix in (3.10).

Example 3.1.1

S is considered the same as in Example 3.1 then by $[S_f]^{-1} = N \triangle N^T$,

$$\triangle = \text{diag } (1/-6, -1/56, 1/63)), \quad N = M^{-1}, \quad N = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix},$$

$$[S_f]^{-1} = \begin{bmatrix} -1/6 & 1/6 & 0 \\ 1/6 & -62/336 & 1/56 \\ 0 & 1/56 & -1/504 \end{bmatrix}$$

$$[S_f]^{-1} = \begin{bmatrix} -1/6 & 1/6 & 0\\ 1/6 & -62/336 & 1/56\\ 0 & 1/56 & -1/504 \end{bmatrix}$$

Corollary 3.3 Let $S = \{x_1, x_2, \dots, x_n\}$ be an a-set, where $f(a) \neq 0$ and $f(x_k) \neq f(a)$ for all $k = 2, \ldots, n-1$. If $a \in S$ (i.e. $a = x_1$), then $[S]_f$ is invertible and

$$([S_f]^{-1})_{ij} = \begin{cases} \frac{\frac{1}{f(x_i) - f(a)}}{\frac{1}{f(a)}} & \text{if } i = j < 1, \\ \frac{\frac{1}{f(a)} + \sum_{k=1}^{n-1} \frac{1}{f(x_k) - f(a)}}{\frac{1}{f(a) - f(x_k)}} & \text{if } k = i < j = n \text{ otherwise} \end{cases}$$

$$(3.11)$$

If $a \notin S$ and further $\frac{1}{f(a)} \neq \sum_{k=1}^{n-1} \frac{1}{f(x_k) - f(a)}$, then $[S]_f$ is invertible and

$$([S_f]^{-1})_{ij} = \begin{cases} \frac{1}{f(x_i) - f(a)} - \frac{1}{[f(x_i) - f(a)]^2} \left(\frac{1}{f(a)} + \sum_{k=1}^n \frac{1}{f(x_k) - f(a)}\right)^{-1} & \text{if } i = j, \\ \frac{-1}{[f(x_i) - f(a)][f(x_j) - f(a)]} \left(\frac{1}{f(a)} + \sum_{k=1}^n \frac{1}{f(x_k) - f(a)}\right)^{-1} & \text{if } i \neq j. \end{cases}$$
 (3.12)

CONCLUSION:

In this paper we prove by examples that the Mersenne-Join matrices on A sets satisfies structure theorem and calculate the determinant and inverse of the Mersenne Join matrix through results based on A sets.

References:

- [1] M. Aigner, Combinatorial Theory. Springer-Verlag, 1979.
- [2] S. Beslin and S. Ligh, GCD-closed sets and the determinants of GCD matrices, Fibonacci Quart., 30: 157-160 (1992).
- [3] G. Birkhof, Lattice Theory. American Mathematical Society Colloquium Publications, 25, Rhode Island, (1984).
- [4] P. Haukkanen, On meet matrices on posets, *Linear Algebra Appl.* 249: 111-123 (1996).
- [5] P. Haukkanen and J. SillanpÄaÄa, Some analogues of Smith's determinant, *Linear and* Multilinear Algebra 41: 233-244 (1996).
- [6] P. Haukkanen, J. Wang and J. SillanpÄaÄa, On Smith's determinant, *Linear Algebra Appl.* 258: 251-269 (1997).
- [7] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, New York, 1985.
- [8] I. Korkee, A note on meet and join matrices and their special cases GCUD and LCUM Matrices, Int. J. Pure Appl. Math. 1-11
- [9] I. Korkee and P. Haukkanen, Bounds for determinants of meet matrices associated with incidence functions, *Linear Algebra Appl.* 329(1-3): 77-88 (2001).
- [10] I. Korkee and P. Haukkanen, On meet and join matrices associated with incidence functions. *Linear Algebra Appl.*, 372: 127-153 (2003).
- [11] I. Korkee, On meet and join matrices on A-sets and related sets, Notes on Number theory and Discrete Mathematics, 10(3):57-67,(2004)
- [12] I. Korkee and P. Haukkanen, On meet matrices with respect to reduced, extended and exchanged sets, JP J. Algebra Number Theory Appl., 4(3),559-575 (2004)
- [13]B. V. RajaramaBhat, On greatest common divisor matrices and their applications, Linear Algebra Appl. 158: 77-97 (1991).
- [14]B. Wang, Explicit Expressions of Smith's Determinant on a Poset, Acta Math. Sin. (Engl. Ser.), 17(1): 161-168 (2001).
- [15] F. Zhang, Matrix theory. Basic results and techniques, Universitext, Springer-Verlag, New York, 1999.